A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone.
نویسندگان
چکیده
Specific inhibitors of hyaluronan (HA) biosynthesis can be valuable therapeutic agents to prevent cancer invasion and metastasis. We have found previously that 4-methylumbelliferone (MU) inhibits HA synthesis in human skin fibroblasts and in group C Streptococcus. In this paper, the inhibition mechanism in mammalian cells was investigated using rat 3Y1 fibroblasts stably expressing HA synthase (HAS) 2. Exposure of the transfectants to the inhibitor resulted in significant reduction of HA biosynthesis and matrix formation. The evaluation of HAS transcripts and analysis of cell-free HA synthesis demonstrated the post-transcriptional suppression of HAS activity by MU. Most interesting, the post-transcriptional suppression of HAS activity was also observed using p-nitrophenol, a well known substrate for UDP-glucuronyltransferases (UGT). We investigated whether the inhibition was exerted by the glucuronidation of MU using both high pressure liquid chromatography and TLC analyses. The production of MU-glucuronic acid (GlcUA) was consistent with the inhibition of HA synthesis in HAS transfectants. MU-GlcUA was also detected at a similar level in control cells, suggesting that the glucuronidation was mediated by an endogenous UGT. Elevated levels of UGT significantly enhanced the inhibitory effects of MU. In contrast, the inhibition by MU was diminished to the control level when an excess of UDP-GlcUA was added to the cell-free HA synthesis system. We propose a novel mechanism for the MU-mediated inhibition of HA synthesis involving the glucuronidation of MU by endogenous UGT resulting in a depletion of UDP-GlcUA.
منابع مشابه
4-Methylumbelliferone Treatment and Hyaluronan Inhibition as a Therapeutic Strategy in Inflammation, Autoimmunity, and Cancer
Hyaluronan (HA) is a prominent component of the extracellular matrix at many sites of chronic inflammation, including type 1 diabetes (T1D), multiple sclerosis, and numerous malignancies. Recent publications have demonstrated that when HA synthesis is inhibited using 4-methylumbelliferone (4-MU), beneficial effects are observed in several animal models of these diseases. Notably, 4-MU is an alr...
متن کاملThe effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells.
Extracellular matrix remodeling after proatherosclerotic injury involves an increase in hyaluronan (HA) that is coupled with vascular smooth muscle cell (SMC) migration, proliferation, and with neointima formation. As such events are dependent on HA, in this study we assessed the effects on SMC behavior of 4-methylumbelliferone (4-MU). As previously described in other cell types, 4-MU reduced H...
متن کاملInhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis.
BACKGROUND Hyaluronan is thought to mediate neointimal hyperplasia but also vasoprotection as an integral component of the endothelial glycocalyx. The present study addressed for the first time the effects of long-term pharmacological inhibition of hyaluronan synthesis on vascular function and atherosclerosis. METHODS AND RESULTS Four-week-old apolipoprotein E-deficient mice on a Western diet...
متن کامل4-Methylumbelliferone Suppresses Hyaluronan Synthesis and Tumor Progression in SCID Mice Intra-abdominally Inoculated With Pancreatic Cancer Cells
OBJECTIVES Pancreatic ductal adenocarcinoma contains large amounts of the glycosaminoglycan hyaluronan (HA), which is involved in various physiological processes. Here, we aimed to clarify the anticancer mechanisms of 4-methylumbelliferone (MU), a well-known HA synthesis inhibitor. METHODS MIA PaCa-2 human pancreatic cancer cells were used. We evaluated cellular proliferation, migration, and ...
متن کاملVascular Medicine Inhibition of Hyaluronan Synthesis Accelerates Murine Atherosclerosis Novel Insights Into the Role of Hyaluronan Synthesis
Background—Hyaluronan is thought to mediate neointimal hyperplasia but also vasoprotection as an integral component of the endothelial glycocalyx. The present study addressed for the first time the effects of long-term pharmacological inhibition of hyaluronan synthesis on vascular function and atherosclerosis. Methods and Results—Four-week-old apolipoprotein E– deficient mice on a Western diet ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 32 شماره
صفحات -
تاریخ انتشار 2004